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Nonnegative Matrix Factorisation (NMF)

• Decompose data matrix (X) as a product of two nonnegative 

matrices of factor loadings (W) and activations (H)

• Nonnegativity constraint for interpretation
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Example: single-cell RNA-seq data

• Identify underlying biological processes (factors) in gene expression 

data

• How can we form meaningful interpretation?
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Sparse NMF (S-NMF)

• Binary mask SH imposes sparsity on H

𝑋 ≈ 𝑊(𝐻⊙ 𝑆𝐻)

• Idea: factors may only be associated with a fraction of cells 

• Liang et al. (2013)
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Doubly Sparse NMF (DS-NMF) 

• Additional binary mask SW imposes sparsity on W

𝑋 ≈ 𝑊⊙ 𝑆𝑊 (𝐻 ⊙ 𝑆𝐻)

• Learn from data which factors affect which subset of features and 
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Bayesian inference

𝑝 𝜃 𝑥) =
𝑝(𝑥, 𝜃)

𝑝(𝑥)
=

𝑝 𝑥 𝜃) 𝑝(𝜃)

∫ 𝑝 𝑥 𝜃) 𝑝(𝜃) 𝑑𝜃

• Posterior is typically intractable to compute

• Resort to approximate methods like Markov Chain Monte Carlo 

(MCMC) or Variational Inference (VI)
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Variational Inference (VI)

• Approximate the posterior distribution with ‘closest’ variational 

distribution 𝑞∗ 𝜃 from a ‘nice’ family of distributions

𝑞∗ 𝜃 = argmin q∈Q 𝑲𝑳 𝒒 𝜽 | 𝒑 𝜽 𝒙

• Equivalent to maximising the Evidence Lower                                       

Bound (ELBO)

ELBO 𝑞 = 𝔼𝑞 log 𝑞 𝜃 − log 𝑝 𝑥, 𝜃

Source: Broderick



Variational Inference (VI)

• Common choice for family Q: mean-field variational family

• Assumption: independence of parameters in variational distribution

• Enables tractable, often closed-form iterative optimisation

Source: Broderick



DS-NMF with VI

𝑋 ≈ 𝑊⊙ 𝑆𝑊 (𝐻 ⊙ 𝑆𝐻)

• Independence assumed between W and SW, H and SH
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DS-NMF with Structured Stochastic VI (DSSVI)

• Inference: Structured Stochastic Variational Inference

𝑋 ≈ 𝑊⊙𝑆𝑊 (𝐻 ⊙ 𝑆𝐻)

• Dependencies restored between W and SW, H and SH
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Simulation study

• Assess performance of DSSVI on estimating sparse SW

• Compare DSSVI vs SSVI on estimating:

• Factor loadings 𝑊⊙𝑆𝑊

• Sparse binary mask S𝐻

• Activations 𝐻⊙ 𝑆𝐻

≈features

samples

X
H⊙ SH

W⊙ SW

samples

factors

factors

features



Simulated dataset

• 300 genes (features)

• 300 cells (samples)

• 4 factors 

𝐸 𝑋 = 𝑊⊙ 𝑆𝑊 (𝐻 ⊙ 𝑆𝐻)



DSSVI: Capturing sparsity in SW

• Use posterior mean for evaluation

• Accuracy of binary mask SW: 

proportion of correctly inferred 0’s and 

1’s



DSSVI: Estimated SW



Estimation of sparse factor loadings

• Relative Root Mean Squared Error 

(RRMSE):

RRMSE መ𝐴, 𝐴 =
σ 𝐴𝑓,𝑘 − መ𝐴𝑓,𝑘

2

σ 𝐴𝑓,𝑘
2

• DSSVI can estimate 𝑊⊙𝑆𝑊 better



Estimation of sparse factor loadings

• SSVI fails to capture the sparse structure of factor loadings

• DSSVI can identify which fraction of genes are affected by which factors



Discussion

• DSSVI can capture sparsity in SH as good as SSVI

• DSSVI performs better in estimating mean of observations

• DSSVI can flexibly learn whether or not sparsity is present in true 

data



Next steps

• Apply to real data

• Single cell RNA-seq data

• Implement log-predictive likelihood metric for evaluation



Conclusion

• DSSVI enhances performance and interpretation

• Can capture sparsity in factor loadings well

• Can capture sparsity in activations as good as SSVI

• More details: https://rbghks0126.github.io/website/AMSI.html

https://rbghks0126.github.io/website/AMSI.html
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