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Nonnegative Matrix Factorisation (NMF)

« Decompose data matrix (X) as a product of two nonnegative
matrices of factor loadings (W) and activations (H)

« Nonnegativity constraint for interpretation

samples factors samples
activations
factors
H
features okl ~ features [loadings
X
W
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Example: single-cell RNA-seq data

« |dentify underlying biological processes (factors) in gene expression
data

» How can we form meaningful interpretation?

cells factors cells
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genes genes




Sparse NMF (S-NMF)

* Binary mask SH imposes sparsity on H
X~W(HQOSH

* |dea: factors may only be associated with a fraction of cells
 Liang et al. (2013)
samples factors samples -

m factors = HQ®SH

HQE SH

features ~ features
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Doubly Sparse NMF (DS-NMF)

« Additional binary mask SW imposes sparsity on W
X=~WQOSY)HOSH

e L earn from data which factors affect which subset of features and
samples

samples factors samples
factors = HQOSH
HOSH
features X ~ features WO SW

<
W QO sW
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Bayesian inference

Joint probability likelihood prior

posterior 6] x) = p(x,0) _ p(x|0)p(0)
distribution p(x)  [p(x]|6)p(6)do

marginal probability

 Posterior is typically intractable to compute

» Resort to approximate methods like Markov Chain Monte Carlo
(MCMC) or Variational Inference (VI)
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Variational Inference (VI)

« Approximate the posterior distribution with ‘closest’ variational
distribution g*(€) from a ‘nice’ family of distributions

q*(6) = argmin ocq KL(q(8) | p(8]x))

» Equivalent to maximising the Evidence Lower /p/(glfx») \
Bound (ELBO) |

ELBO(q) = E4 [logq(8) —log p(x,6)] \

Source; Broderick
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Variational Inference (VI)

« Common choice for family Q: mean-field variational family
« Assumption: independence of parameters in variational distribution

» Enables tractable, often closed-form iterative optimisation

Source: Broderick



DS-NMF with VI

X~WQOSs")HOS

* Independence assumed between W and SV, H and SH

samples HO SH

features
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DS-NMF with Structured Stochastic VI (DSSVI)

» Inference: Structured Stochastic Variational Inference

X=WOS")( )
« Dependencies restored between W and SW, H and S*
samples g
features X ~~ wosY

wWQosW ﬂ
\V4

« Liangetal. (2014)
WAMSI



Simulation study

 Assess performance of DSSVI on estimating sparse SW

« Compare DSSVI vs SSVI on estimating:
« Factor loadings W © SW
« Sparse binary mask S¥
« Activations H © SH

factors
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Simulated dataset

» 300 genes (features)
300 cells (samples)
* 4 factors

W*SW H*SH True Wxs%W True H*sSH
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DSSVI: Capturing sparsity in SW

» Use posterior mean for evaluation

 Accuracy of binary mask SW:
proportion of correctly inferred O’s and
1's
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300 genes

DSSVI: Estimated SW

True SW

50

100

150

300 genes

200

250

1 2 3 4
Factors

Factors




Estimation of sparse factor loadings

» Relative Root Mean Squared Error
(RRMSE):

S(Ary = Ari)”
Y Az,

RRMSE(4,4) = J

« DSSVI can estimate W ) SW better

RRMSE
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Estimation of sparse factor loadings

DSSVI: E(W)* E(SW)

SSVI: E(W)
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« SSVI fails to capture the sparse structure of factor loadings

2

o

3
Factors

« DSSVI can identify which fraction of genes are affected by which factors
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Discussion

« DSSVI can capture sparsity in SH as good as SSVI
« DSSVI performs better in estimating mean of observations

« DSSVI can flexibly learn whether or not sparsity is present in true
data




Next steps

* Apply to real data
 Single cell RNA-seq data

 Implement log-predictive likelihood metric for evaluation
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Conclusion

« DSSVI enhances performance and interpretation
» Can capture sparsity in factor loadings well
» Can capture sparsity in activations as good as SSVI

* More details: https://rbghks0126.github.io/website/AMSI.html

< C @ rbghks0126.github.io/website/AMSLhtml
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Implementation / Simulations

Derivations

« Laplace Approximatior

Paper Summaries

ational Inference (LAVI) - Detailed derivation of the variational factors’ updates for BP-NMF (one

sparsity matrix) by Liang et al (2013).
= Doubly Structured Stochasti ational Inference (DSSVI) for BP-NMF - Exten: of Hoffman and Liang (2014), where an
additional sparsity matrix has been added to enforce sparsity in the first factored matrix as well.

= Gibbs Sampling version of DSSVI BP-NMF

Doubly sparse LAVI - Derivation of variational factors’ updates for doubly sparse BP-NMF. An extension of LAVI for BP-NMF.

Impmwwnwvon/&wmbUmw

1- Both Sparse Matrices & same K across runs.

2- One Sparse Matrix & same K across runs.

rison 3 - Both Sparse Matrices & different K across runs.
n 4 - One Sparse Matrix & different K across runs

Paper Summaries
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https://rbghks0126.github.io/website/AMSI.html
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